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This paper explains the computerized batch processing experiment examining the 

operational impacts of the introduction of Automatic Dependent Surveillance-Broadcast 

(ADS-B) equipment and the In-Trail Procedure (ITP) to the North Atlantic Organized 

Track System (NATOTS).  This experiment was conducted using the Traffic Manager 

(TMX), a desktop simulation capable of simulating airspace environments and aircraft 

operations.  ADS-B equipment can enable the use of new ground and airborne procedures, 

such as the ITP.  The ITP is among the first of these new procedures, which will make use of 

improved situation awareness in the local surrounding airspace of ADS-B equipped aircraft 

to enable more efficient oceanic flight level changes.  The data collected were analyzed with 

respect to multiple operationally relevant parameters including fuel burn, request approval 

rates, and the distribution of fuel savings.  This experiment showed that through the use of 

ADS-B or ADS-B and the ITP that operational improvements and benefits could be 

achieved. 

Nomenclature 

ADS-B  = Automatic Dependent Surveillance-Broadcast 

ADS-B IN  = Automatic Dependent Surveillance-Broadcast (receive) 

ADS-B OUT = Automatic Dependent Surveillance-Broadcast (transmit) 

ASAS  = Airborne Separation Assistance System 

ATC  = Air Traffic Control 

ATM  = Air Traffic Management 

ATOL  = Airspace and Traffic Operations Laboratory 

ATSP  = Air Traffic Service Provider 

BADA  = Base of Aircraft Data 

CDTI  = Cockpit Display of Traffic Information 

CPDLC  = Controller Pilot Data-Link Communication 

FMS  = Flight Management System 

GFS  = Global Forecast System 

ICAO  = International Civil Aviation Organization 

ITP  = In-Trail Procedure 
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Kts  = Knots 

LaRC  = Langley Research Center 

MHz  = Mega-Hertz (frequency) 

NASA  = National Aeronautics and Space Administration 

NATOTS  = North Atlantic Organized Track System 

NLR  = National Aerospace Laboratory (Netherlands) 

nmi  = nautical miles 

NOAA  = National Oceanic and Atmospheric Administration 

NOTAM  = Notice to Airmen 

OCA  = Oceanic Control Area 

RADAR  = Radio Detection And Ranging 

RFG  = Requirements Focus Group 

RM0  =Request method zero (requested altitude is the optimum altitude at entry) 

RM1  =Request method one (optimum at entry plus 1000 feet-compromise altitude) 

SA  = Situation Awareness 

SASP  = Separation and Airspace Safety Panel 

SPR  = Safety, Performance and Interoperability Requirements 

TCAS  = Traffic alert and Collision Avoidance System 

TDA  = Traffic Density Analyzer 

TIS-B  = Traffic Information Services - Broadcast 

TMX  = Traffic Manager 

U  =NATOTS track 

V  =NATOTS track 

VHF  = Very High Frequency 

W  = NATOTS track 

X  = NATOTS track 

Y  = NATOTS track 

Z  = NATOTS track 

I. Introduction 

HE National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) has been 

developing a new airborne procedure, known as Automatic Dependent Surveillance-Broadcast (ADS-B) In-

Trail Procedure (ITP), to take advantage of the implementation of ADS-B. The United States, Australia and Europe 

have established programs to develop and implement ADS-B to improve Air Traffic Management.
1-3
  Benefits of 

ADS-B include increased surveillance range and a more extensive message set compared to existing technology.  

The ITP is intended to be used in non-radar (Radio Detection and Ranging) airspace that is employing procedural 

separation.  Through the use of airborne ADS-B data, onboard tools, and a new separation standard based on these 

data and tools, aircraft will be able to make a new type of altitude change request to enable altitude changes that 

would not previously have been approvable.  In support of the development of this procedure several experiments 

have been completed including human-in-the-loop studies evaluating both pilot and controller aspects of the ITP, 

safety analyses, and computerized batch processing studies investigating the operational impacts of the use of the 

ITP.  This paper will present results of the computerized batch processing study and discuss some of the operational 

benefits that can be gained through the use of the ITP. 

 

II. Background 

The ITP is designed for use in non-radar procedural airspace.  For this experiment, the North Atlantic Organized 

Track System (NATOTS) was selected.  On a typical day, there are approximately 800-1,000 aircraft that cross the 

North Atlantic, where about half to two-thirds (400-600) of the traffic operate on the NATOTS. The other flights 

operate on non-structured routes, known as random routes that are uniquely designed and requested routes.  In 

addition to the large number of aircraft, for an oceanic environment, the majority of the aircraft travel across the 

ocean during a relatively small window of time.  This is done for scheduling reasons by the airlines to accommodate 

destination airport curfew restrictions as well as accommodating the most popular travel times of customers. Due to 

these policies, many of the flights operate on similar routes around the same time which in turn results in local 

congestion.  Since most of the traffic is made up of similar aircraft types, there is a large demand for similar crossing 
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altitudes.  This generally requires that some aircraft fly at altitudes other than what they requested, which may not be 

as fuel efficient.  The effect of this problem is also increased by the separation standards being used.  In the North 

Atlantic, the separation standard currently being used is a 10 minute Mach Number Technique.  Additional 

information on this technique can be found in the Application of Separation Minima for the North Atlantic Region.
4
 

While there are occasional aircraft that climb or descend to more optimum altitudes during the oceanic crossing, 

most aircraft do not make any altitude change requests for the duration of the crossing.  There are spaces at desirable 

altitudes on the track system into which an aircraft could climb or descend, but in today’s system the pilots do not 

know where these openings are and therefore when to initiate a new request.  One factor that contributes to this 

problem is that there is limited local surveillance available to pilots today.  The result of this is that only about 6% 

(B. McPike [NATS UK] personal communication, October 28, 2004), of aircraft perform any altitude changes in 

current day operations, although this number does seem to be increasing.   The range of ADS-B allows for improved 

surveillance of surrounding traffic and is greater than the current separation standards employed in the NATOTS.  

ADS-B IN can be used to provide a means of finding potential climb or descent opportunities that exist within the 

current system. This first benefit results from increased situation awareness (SA) of surrounding traffic that is 

achieved through a graphical cockpit display of traffic information (CDTI).  A CDTI is not required for ITP, but it is 

expected that a CDTI would provide additional benefit to an ITP installation.  While an increase in SA is of benefit, 

the ITP establishes new procedures and a proposed new separation standard to enable altitude changes that would 

not be possible under current operations.  The ITP has been designed to take advantage of ADS-B technology that 

can enable inter-aircraft transmission and reception of position and other relevant aircraft information.
5, 6
  The details 

of the ITP are explained in the next section. 

III. In-Trail Procedure 

The ITP is being developed by the RTCA/EUROCAE sponsored Requirements Focus Group (RFG) and the 

International Civil Aviation Organization (ICAO) Separation and Airspace Safety Panel (SASP).  A complete 

description of the procedure can be found in the Safety, Performance and Interoperability Requirements (SPR) 

Document for the ATSA-ITP application (ED-159) document.
7
  The ITP is intended to enable altitude changes that 

would currently be blocked due to aircraft spaced at less than current separation standards at altitude(s) between the 

current and desired altitudes of a requesting aircraft.  Standard separation is required between all aircraft at the 

current and the desired altitudes.  This is possible through the use of ADS-B, onboard tools, and the new ITP.  The 

following definitions are useful to help understand the ITP: 

• The ITP Aircraft is the aircraft making an ITP request for an altitude change and has the necessary onboard 

tools, equipment and crew training. 

• Reference Aircraft are one or two same direction aircraft at an intermediate altitude, that are transmitting 

qualified ADS-B data, and that meet the ITP initiation criteria. 

• Same Direction occurs when the aircraft tracks or portions of the tracks fall within +/- 45 degrees of each 

other. 

• Same Track is a further restriction of Same Direction that occurs when the protected zones for each track 

overlap   

• Intermediate altitudes include all altitudes between the ITP aircraft’s current altitude and its requested 

altitude.   

• The ITP initiation criteria include that reference aircraft must meet one of two conditions: if the ITP 

distance to a reference aircraft is equal to or more than 15 nautical miles (nmi) then the groundspeed 

difference must be less than or equal to 20 knots (kts) between the two aircraft or if the ITP distance to a 

reference aircraft is equal to or more than 20 nmi then the groundspeed difference must be less than or 

equal to 30 kts between the two aircraft. 

•  The ITP distance is defined as the distance between a Reference Aircraft and the ITP Aircraft; it is 

calculated as the difference in distance to a common point along each aircraft’s track.  There is no 

requirement that the common point be co-located with any form of navigational waypoint.  This is shown 

graphically in Figure 1. 
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The ITP aircraft, using on-board tools, makes use of ADS-B reports from nearby aircraft and determines which 

of the aircraft have qualified ADS-B data and meet the ITP criteria.  The ADS-B reports must meet specific limits 

for the accuracy and integrity of the data in order to be used for the ITP.  In order for the ITP to be requested, both 

the ITP aircraft and any reference aircraft must be same direction, and the initiation criteria must be met between the 

ITP aircraft and any reference aircraft.  If these conditions are met, then the flight crew can make an ITP request to 

Air Traffic Control (ATC).  An air traffic controller must review the request using all available information to 

ensure separation will exist with all aircraft not involved in the ITP, as well as ensure that ITP requirements are met.  

In order for a controller to approve an ITP, the following conditions must exist: 

• the ITP aircraft can not be a reference aircraft for another ITP clearance; 

• the ITP aircraft and each reference aircraft must be classified as Same Track; 

• reference aircraft can not be in the process of maneuvering or be expected to maneuver; and 

• the ITP and reference aircraft Mach numbers must be within 0.04 of each other if one aircraft is closing on 

another. 

Upon receiving an ITP clearance from ATC, a flight crew must confirm that the initiation criteria are still met 

with each reference aircraft identified in the clearance prior to accepting the clearance and initiating the altitude 

change.  Once the altitude change is completed, the ITP aircraft must report level at the cleared altitude. 

The ITP can be applied equally during climb or descent maneuvers.  Provided that all of the ITP criteria are met, 

any of the following aircraft configurations can be used: 

1. The ITP aircraft is following one or two reference aircraft 

2. The ITP aircraft is leading one or two reference aircraft 

3. The ITP aircraft is leading one reference aircraft and following one reference aircraft 

For configurations 1 and 2, if two reference aircraft are being used, then the aircraft must be located on separate 

intermediate altitudes.  For configuration 3, the two reference aircraft can be located on the same or separate 

intermediate altitudes. 

IV. Experiment Tool 

A desktop air traffic simulation computer program called Traffic Manager (TMX) was used to simulate the 

environment for this experiment. The simulation environment created for this experiment included the oceanic 

airspace, the NATOTS, multiple ATC centers, and the individual aircraft.  TMX is a medium fidelity desktop 

simulation application designed for interaction studies of aircraft in present or future Air Traffic Management 

(ATM) environments. TMX was originally developed by the National Aerospace Laboratory (NLR) in The 

Netherlands, and it can serve as a stand-alone traffic simulator, scenario generator, scenario editor, experiment 

control station, data-recording tool, and rapid prototyping environment. Both the NLR and the NASA LaRC have 

continued to enhance and improve TMX, making it a valuable asset to many ATM research projects.
8
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TMX is capable of simulating up to 2,000 aircraft simultaneously with each aircraft using a six-degrees-of-

freedom dynamics model, augmented with performance parameters from the EUROCONTROL Base of Aircraft 

Data (BADA) database.
9
  Other features include:  

• Gate to Gate Operations:  includes approach and taxi 

• Auto flight Model:  basic altitude, heading, and speed modes, plus Flight Management System (FMS) 

modes with auto throttles and Required Time of Arrival functionality 

• ADS-B Model: includes range limits 

• Airborne Separation Assistance Systems (ASAS):  conflict detection, resolution, and prevention 

systems selectable among multiple variants 

• Airborne Precision Spacing: for merging and spacing operations 

• Pilot Model:  includes parameters for reaction time and scheduling of tasks 

• Wind Model:  3D “truth” and predicted wind fields 

• Weather Model:  includes moving weather cells 

• Data logging: time and event based 

 TMX also supports external connection interfaces to connect to full motion simulators and to integrate with 

the NASA LaRC Air Traffic Operations Laboratory (ATOL).  Depending on the research need, TMX can operate 

either in real time or fast time mode.   TMX can be modified to accommodate new and changing research 

requirements. 

 

A. Development 
In addition to the current functionality that exists in TMX, several enhancements were required for this research 

effort.  The first enhancement that was necessary was the creation of the oceanic flight environment that exists in the 

North Atlantic.  This included the addition of Oceanic Control Areas (OCAs), the ability to load in National Oceanic 

and Atmospheric Administration (NOAA) Global Forecast System (GFS) wind forecasts,
10
 and the ability to assign 

the NATOTS notice to airmen (NOTAM) messages as routes to aircraft.  The second two processes also required the 

creation of an external program to convert the data into the correct format to be read into TMX.  Since in the North 

Atlantic aircraft can use Controller Pilot Data Link Communication (CPDLC), it was necessary to expand and 

improve the existing CPDLC functionality within TMX.  Among these enhancements was the addition of messages 

for position reports and ITP required messages.  The next enhancement made was to the fuel model, and how the 

fuel flow calculation is performed.  The core of the TMX performance model is based on the BADA database.  In 

order to achieve the desired level of accuracy in the fuel flow model for this experiment, a new calculation method 

was implemented that uses a 4
th
 order polynomial function that is a curve fit to the data contained in Cruise-Mach 

tables.  This improved model is only applied during the cruise portion of any flight.  Due to proprietary restrictions 

on obtaining appropriate fuel flow data required to implement this improved fuel model, there are many aircraft 

types in TMX that still use the BADA calculations.  The improved fuel model was implemented for ten aircraft 

types typically flown in the North Atlantic region and these were the only aircraft types used in this experiment. 

The next major task required for this research was to redesign the pilot model within TMX.  The existing model 

within TMX was not capable of performing all of the required tasks related to the ITP and oceanic airspace.  By 

redesigning the entire model, the capability and realism of the pilot model has been significantly improved.  The 

new pilot model handles tasks that in real-life could be manually completed (altitude requests) and automatically 

completed (position reports).  The model is also now easily extendable to include functionality for new tasks, when 

they are needed.  The creation and sending of position reports by each aircraft is one example of a new task that was 

added specifically for this research effort. 

The last development effort was the creation of an ATC model within TMX.  This was required in order to be 

able to simulate aircraft operating in the oceanic environment, to look into the effects of differences in the 

surveillance information available to pilots and controllers, and to examine the communications involved with each 

altitude change request.  The ATC model was designed using the same architectural layout as the pilot model in 

order to make it expandable and multifunctional.  The ATC model is based on OCAs, an ATC center is created for 

each sector loaded in the simulation.  Aircraft flying within each OCA will send all communications to that ATC 

center.  There is also coordination performed when an aircraft is near the boundary of sectors in that position reports 

will also be sent to the adjacent sector(s).  There is not currently any coordination between adjacent ATC centers 

when a maneuver is requested near a boundary. 
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V. Experiment Design 

In this experiment there were four variables considered: 1) the ADS-B environment which was made up of the 

percent of aircraft in the scenario that were equipped with ADS-B OUT and the percent of aircraft in the scenario 

that were equipped with ADS-B IN, 2) the density of aircraft in the NATOTS, 3) if the aircraft equipped with ADS-

B IN were capable of performing the ITP, and 4) the request method used for track entry.  The levels of ADS-B 

OUT equipage used were 30%, 60%, and 90% and for ADS-B IN were 10%, 45%, and 80% of all aircraft in the 

scenario.  These two variables together describe an equipage level that provides the surveillance environment for 

each experiment condition.  It was assumed that any aircraft equipped with ADS-B IN would also be equipped with 

ADS-B OUT.  Therefore, cases that would result in a higher ADS-B IN than ADS-B OUT equipage rate were not 

considered.  This combination of ADS-B OUT and ADS-B IN values yielded 6 equipage levels.  A seventh level 

was used as the baseline condition in which none of the aircraft were equipped with ADS-B IN or ADS-B OUT.  

There were four traffic densities used for the total number of aircraft and the target values were 0.5, 1.0, 1.5, and 2.0 

times current traffic levels.  Throughout the experiment and this paper, these traffic levels are referred to as Low, 

Medium, High and Ultra, respectively.  Table 1 shows a summary of the recorded traffic data from March 25, 2006-

January 23, 2007.  The average number of aircraft for each traffic density is shown in Table 2 along with an 

approximate ratio to the average number of aircraft from the recorded traffic data.  Due to the complexities of 

generating traffic flows with realistic characteristics, the traffic levels generated for this experiment resulted in 

slightly less than the nominal target values.  These are the values shown in Table 2, and used in the remainder of this 

paper. 

 

 

 

 

 

 

 

 

The fourth variable of ITP capability was varied as either 0% (SA only) or 100% (SA+ITP) of the ADS-B IN 

equipped aircraft.  This parameter allowed the ADS-B IN equipped aircraft to either use only the SA aspects of an 

ADS-B/ITP display or to combine that information with the increased flexibility of the ITP when making altitude 

change requests.  The use of ADS-B information for situation awareness allowed the pilot model to make more 

informed altitude change requests, even when not equipped with the ITP.  The relationship of these three variables 

and the values used are represented in Table 3.   

 

Table 1.  Real day traffic density level 

Minimum # of 

Aircraft 

Maximum # of 

Aircraft 

Average # of 

Aircraft 

Standard 

Deviation 

61 301 232.15 30.59 

Table 2. Experiment traffic density levels 

 Low Medium High Ultra 

Ratio to Real 

Traffic 0.5 1.1 1.4 1.9 

Number of 

aircraft 125 261 318 456 

Table 3.   Experiment design matrix 

  % ADS-B OUT _ % ADS-B IN 

  0_0 30_10 60_10 90_10 60_45 90_45 90_80 

Low 

(0.5X) 

SA SA SA+

ITP 

SA SA+

ITP 

SA SA+

ITP 

SA SA+

ITP 

SA SA+

ITP 

SA SA+

ITP 

Medium 

(1.1X) 

SA SA SA+

ITP 

SA SA+

ITP 

SA SA+

ITP 

SA SA+

ITP 

SA SA+

ITP 

SA SA+

ITP 

High 

(1.4X) 

SA SA SA+

ITP 

SA SA+

ITP 

SA SA+

ITP 

SA SA+

ITP 

SA SA+

ITP 

SA SA+

ITP 

T
ra
ff
ic
 D
en
si
ty
 

Ultra 

(1.9X) 

SA SA SA+

ITP 

SA SA+

ITP 

SA SA+

ITP 

SA SA+

ITP 

SA SA+

ITP 

SA SA+

ITP 
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Table 3 represents only half of the experiment design matrix, which was repeated across the remaining 

experiment variable (request method).  The variable of request method determined what altitude an aircraft would 

request when approaching the entrance of the NATOTS.  All aircraft would look at what the optimum fuel flow 

altitude would be at a specified look-ahead time past the entrance of the track.  The request method would either use 

that altitude (RM0) or would add one thousand feet to that altitude (RM1).  These two request methods are based on 

request methods used by airlines in today’s operations.  Some airlines flight-plan with the expectation of making a 

climb during the flight and therefore request entry into the track structure at the current optimum altitude (RM0).  

Other airlines do not expect to climb at all and therefore determine a compromise altitude (between optimum at 

entry and optimum at exit) which usually occurs about 1,000 feet above the current optimum altitude at entry 

(RM1). 

The portion of the experiment design matrix shown in Table 3 contains 52 cells.  When this is duplicated, the 

result is a total of 104 cells for the entire experiment matrix.  In order to provide a statistically significant number of 

samples throughout the experiment, each of the 104 cells had 18 replicates run in it.  A statistical power analysis was 

performed to determine that 18 replicates was the minimum number that would be needed across all of the variables 

of interest.  Each of the 18 replicates was an independent traffic flow into the NATOTS.  Each traffic flow was 

representative of a single day at the specific traffic density and was randomly generated from a distribution function 

such that the desired NATOTS characteristics would be simulated (e.g. traffic distribution across the NATOTS, 

distribution of aircraft arrivals into the NATOTS, and total number of aircraft).  When accounting for the 18 

replicates per experiment cell, there were a total of 1,872 individual scenarios run through TMX for data collection 

in this experiment. 

VI. Simulation Validation and Scenario Creation 

The ability of TMX to accurately simulate current day operations was of critical importance in this experiment.  

A significant portion of the development effort was spent making this possible and validating the simulation against 

data collected March 7-15, 2005 and March 26, 2006 through January 23, 2007.  The primary comparisons were the 

distribution of aircraft between the active tracks, the distribution of aircraft in time for the whole NATOTS, and the 

total number of aircraft that passed through the NATOTS.  The data collected from NavCanada’s Traffic Density 

Analyzer (TDA) between March 26, 2006 and January 23, 2007 was used to determine the average distribution of 

aircraft between the active tracks of the NATOTS.  This is an important aspect of the NATOTS operation since not 

all of the tracks are loaded with an equal number of aircraft.  The NATOTS is designed, every 12 hours, to be either 

centered on the jet stream during eastbound operations or avoiding the jet stream during westbound operations.  This 

results in most of the traffic requesting entry on the central tracks, leaving the outer tracks less populated for 

eastbound flights.  An example of this distribution is shown in Figure 2 for the traffic load on March 7, 2005, along 

with the average across all 18 medium density traffic flows within the experiment.  March 7, 2005 is the date that 

was used for the NATOTS and wind field throughout the experiment.  Due to the Southern most track having a 

significantly lower count of aircraft, track Zulu (Z) was not included in this experiment. 
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For the comparison of the traffic distribution in time, recorded data from Shanwick Oceanic Control for the 

period of March 7-15, 2005 was used.  The number of aircraft in the NATOTS was counted at 60 second intervals.  

This showed how the density of aircraft in the system changed with time.  This distribution also is not uniform 

between the active tracks of the NATOTS.  In order to be able to create scenarios that would contain a similar 

distribution to the real NATOTS traffic loads, a distribution function was created within TMX that could be adjusted 

through input parameters to achieve the desired density and distribution of aircraft.  This function is based on the 

generation of an exponentially distributed random number and a nominal creation interval between aircraft; this is 

performed on a per track basis.  The input parameters were calibrated to create traffic flows with a distribution 

similar to that of the March 2005 data.  The calibration was performed independently for each track used in the 

experiment.  The target traffic densities based on the data from the TDA were used to ensure that the traffic flows 

had similar levels of aircraft to what was desired.  The comparison of both the distribution and the traffic density 

within the NATOTS was used as the basis of selecting which traffic flows would be used in the experiment.  This 

process resulted in the required 18 traffic flows for each of the four traffic densities of the experiment.  Figure 3 

shows how the average distribution of the final experiment traffic flows compare to the average distribution of the 

March 2005 data.  This graph covers the time period during which the eastbound tracks were active (~12 hours) and 

includes the count of all tracks combined.  The actual data shown is the average of the nine days worth of data that 

was collected, and each experiment density is the average of the 18 flows that were simulated.  Since the actual 

traffic distribution data only exists for one traffic density, the times used to create the higher traffic densities were 

multiplied by a scalar resulting in an estimate of how the curve would scale with increased traffic densities. 
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Figure 2. NATOTS loading comparison 
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Once the 72 experiment traffic flows (18 flows * 4 densities) were selected, the aircraft had to be loaded onto 

each track at specific altitudes such that the required separation would exist throughout the duration of each flight.  

This track loading process made use of the ATC model to assign each aircraft a crossing altitude.  The assigned 

altitude was based on the entry altitude request that each aircraft made to ATC prior to entering the NATOTS.  The 

ATC model would attempt to load each aircraft at their requested altitude.  If this was not possible, ATC would 

check for an altitude that would provide required separation in an expanding altitude envelope from the requested 

altitude.  For this experiment, the sequence that ATC used for loading is shown in Table 4.  This sequence was 

developed with support from team member observations of track loading operations made during tours of NATOTS 

control centers for Gander and Shanwick OCAs. 

 

 

0

50

100

150

200

250

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Time (sec)

N
u
m
b
e
r 
o
f 
a
ir
c
ra
ft

ACTUAL DATA

LOW

MEDIUM

HIGH

ULTRA

 
Figure 3. NATOTS traffic distribution in time 

Table 4. ATC altitude assignment sequence 

Attempt 

Delta from 

Requested Altitude 

(feet) 

1 0 

2 + 1000 

3 + 2000 

4 - 1000 

5 - 2000 

6 - 3000 

7 + 3000 

8 - 4000 

9 + 4000 

10 + 5000 
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When an aircraft could not be loaded at any altitude in this sequence such that it would maintain the required 

separation, it was removed from the simulation.  The removal of an aircraft was a rare occurrence, and did not 

significantly impact the average densities of the resulting experiment scenarios.  Aircraft were not allowed to be 

assigned an altitude that was not within the defined NATOTS, or that was not within the flight envelope of the 

aircraft.  The remaining aircraft were recorded into a new scenario.  This loading process of the aircraft to a specific 

altitude created the baseline scenarios for the experiment, a total of 144 (72 traffic flows * 2 request methods). 

The following figure shows how the density of each experiment traffic flow compares to the recorded TDA data 

for eastbound tracks.  The number of flights that occur on the westbound tracks is usually comparable to the 

eastbound tracks, resulting in about 400-600 flights on the NATOTS each day.  Westbound tracks were not 

simulated in this experiment due to previous results that showed no significant difference between eastbound and 

westbound flights.  Figure 4 shows the 18 traffic flows per density when run with the RM0 request method.  There 

were very few differences that occurred when aircraft were loaded into the system using the RM1 request method.  

It may be noticed that the actual data in this graph is aligned closest with the medium density data, and in the 

previous figure the actual data aligned best with the low density data.  The primary reason for this difference is the 

dates for which the data was collected.  In March 2005 the traffic levels in the North Atlantic were not as high as 

they were during the March 2006-January 2007 time period.  Table 5 shows the average number of flights across the 

two actual data sets and the four experiment densities.  It can be seen that the March 2005 data is consistently 

aligned with the low density for both distribution (Figure 3) and total number of flights (Table 5). 
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Figure 4. Density comparison for requested entry at optimum altitude (RM0) 

Table 5. Average number of flights in the NATOTS 

 Actual Data Sets Experiment Data Sets 

 March 

2005 

March 2006-

January 2007 

Low Medium High Ultra 

Average 128.6 232.2 125.3 261.5 318.6 456.7 
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The process of requesting an entry altitude and ATC assigning a crossing altitude was only performed during the 

creation of the baseline scenarios.  After the baseline scenarios were created, they were used to create the remaining 

experiment scenarios by only adjusting what equipment each aircraft was created with.  This process did not involve 

the use of TMX, but a stand alone application.  This application would use a baseline scenario and a series of 

random number sequences.  For each baseline scenario there were six groups containing two sequences of random 

numbers. Each group corresponded to an equipage level in the experiment matrix (30_10, 60_10, 60_45, 90_10, 

90_45, or 90_80).  One sequence per group contained the numbers for the aircraft that would be equipped with only 

ADS-B OUT, and the other contained the numbers for the aircraft that would be equipped with both ADS-B OUT 

and ADS-B IN.  These numbers referred to the sequence in which the aircraft were created in the scenario.  When 

the sequences were generated they were kept self consistent across equipage levels.  For example, once an aircraft 

was equipped with ADS-B OUT, (e.g., at the 30% level) it would at least be equipped with ADS-B OUT in any 

higher equipage environments (i.e., 60% or 90% levels).  The same was true for the creation of the ADS-B IN 

equipage sequences.  This process only changed which aircraft were equipped with ADS-B, but not their position or 

flight plan in the scenario. 

Each ADS-B equipage environment (6 levels) and procedural capability (SA or SA+ITP) generated a new 

experiment scenario resulting in a total of 12 experiment scenarios, in addition to the original baseline scenario.  

This was repeated for each of the 144 baseline scenarios, yielding all 1,872 scenarios used in the experiment [144 

baseline + (12*144) experiment scenarios].  These scenarios were then run through TMX to perform the data 

collection for the experiment. 

VII. Assumptions and Configurations 

In addition to the creation of the experiment scenarios, there were some assumptions and configuration settings 

needed for the simulation to operate as a realistic environment.  A key assumption was the frequency and time at 

which aircraft would make an altitude change request.  None of the aircraft were allowed to make any altitude 

change requests for the first 10 minutes they were in the track system.  This was to ensure that aircraft would not be 

approved for a maneuver that would place them into conflict with an aircraft that had not been created yet.  This is 

based on current operations, because if an aircraft could change altitude within the first 10 minutes (current required 

separation), then ATC would have allowed the aircraft to enter at that altitude.  All aircraft were also restricted from 

making requests for the last 100 nmi of the track system.  This was done for two reasons, the first being that once an 

aircraft and the trailing aircraft enter radar coverage near the exit of the track system, the required separation is 

reduced to 5 nmi instead of 10 minutes.  Very High Frequency (VHF) radio coverage is also available at that point, 

making any altitude change requests much easier and faster to communicate.  The second reason to restrict the 

requests near the exit was to avoid any conflicts during data analysis.  Since the aircraft were deleted from the 

simulation at the track exit, the trailing aircraft could (without this restriction) be cleared for a maneuver that would 

not be approvable had the first aircraft still been in the simulation.  As a result of all these restrictions, aircraft were 

only allowed to make altitude change requests during the period 10 minutes after entering the tracks to 100 nmi 

before exiting the tracks.  

The frequency at which aircraft could make requests was set differently depending on if the aircraft was 

equipped with ADS-B IN or not.  For the non-ADS-B IN equipped aircraft (comparable to the vast majority of 

today’s aircraft) they could make a single altitude change request when approaching the sector transition between 

Gander and Shanwick, if it was desired to move closer to the optimum fuel burn altitude.  This point occurs near the 

half-way point through the NATOTS crossing. This is similar to how operations are conducted currently in the 

NATOTS. In order to maintain a realistic number of altitude changes actually being performed in relationship to 

current day operations, not all of the requests made that could be approved were approved.  Of the valid requests 

made by non-ADS-B IN equipped aircraft, the requests that were approved were intended to result in about 6% of 

the aircraft being able to maneuver. The selection of which valid requests were approved was done on a random 

basis.  The result was that the actual number of requests approved for non-ADS-B IN equipped aircraft was between 

2% and 8% of the aircraft, depending on the particular scenario.  This restriction was not applied to aircraft equipped 

with ADS-B IN, where all approvable requests were approved.  The ADS-B IN equipped aircraft were allowed to 

make an altitude change request at any point during the crossing provided they had not done so in the prior 10 

minutes.  The last assumption related to when aircraft could make altitude change requests has to do with making a 

follow-up request.  Follow-up requests were allowed when an aircraft had a request denied.  This method would try 

to get closer to the originally desired altitude, and would be repeated for each altitude that appeared available from 

the cockpit.  This process stopped when there were no more altitudes between the present and near-optimum 

altitudes, or when a request was approved. 
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Another critical assumption was the method that the pilot model used to determine what type of altitude change 

was appropriate based on available traffic information.  There were three possible outcomes that could result from 

consideration of an altitude change request: no altitude change request, a standard (non-ITP) altitude change request, 

or an ITP altitude change request.  The type of request and amount of available information depended on the 

equipment each aircraft had.  The first step of the process was to determine if a flight level change was desired to fly 

closer to the optimum altitude.  It was assumed that an aircraft would always climb if the optimum fuel flow altitude 

was higher than the current altitude.  It was also assumed that an aircraft would only descend towards the optimum 

fuel altitude if the difference was greater than 1,000 feet.  If an aircraft was assigned a higher altitude than the pilot 

model requested, then it was permitted to descend at most to the original requested entry/crossing altitude.   

Once it was determined that an aircraft wanted to change altitude, there were two primary means of traffic 

information to check prior to making a request: Traffic alert and Collision Avoidance System (TCAS) and ADS-B.  

All aircraft in the experiment were equipped with a TCAS.  Since the effective range of TCAS is approximately 30-

40 nmi
11
 (though some new TCAS do have a greater range of 80-100 nmi), surveillance of surrounding traffic on the 

TCAS display was limited. To simulate this result in the experiment, TCAS only equipped aircraft were not 

considered “visible” to the pilot model when they were further than 40 nmi away.  The second means of surveillance 

of surrounding traffic that was available to some of the aircraft was the use of ADS-B IN information.  The effective 

range of ADS-B used in this experiment was 190-200 nmi.  Due to the criteria of the ITP, Table 6 was designed to 

control what requests the pilot model would make. 

 

 

The information contained in Table 6 was used to evaluate the available request based on each visible traffic 

aircraft, and the most restrictive request would be made after all visible aircraft were evaluated.  The most restrictive 

condition was when no request could be made followed by an ITP request and a standard (non-ITP) request.  The 

range differentiation points were selected as follows: 

• 15 nmi is the minimum initiation distance for an ITP request.  If there was a “visible” traffic aircraft within 

15 nmi there were no valid requests that could be made. 

• 60 nmi was selected because it is slightly less than the nominal separation being used.  It is less to increase 

the likelihood of valid requests being made during cases when separation of aircraft might be near the 

limits of allowable separation.   

• 160 nmi comes from the separation standards used in the North Atlantic, and is a practical limit of what 

could be considered a maximum range required for current separation standards. 

In real operations, ATC can always approve a less restrictive procedure than what is requested. For example if an 

aircraft requests an ITP, ATC could approve a standard climb if required separation exists, but an ITP could not be 

approved if a standard request was made.  The other reason for this approach is that even in real day operations the 

pilots do not usually know the exact separation standard being applied to their aircraft; this approach to requests 

captures the idea that if an altitude change might be possible, pilots should make a request and try to take advantage 

of the opportunity. 

VIII. Results and Discussion 

Due to the extensive nature of this experiment, only a portion of the results obtained is included here.  For 

complete results see Ref. 12.  The two primary aspects of the results that are included in this paper examine the 

benefits in terms of request approvals and fuel burn.  Within the results section, the traffic densities will be referred 

to as Low, Medium, High, and Ultra, corresponding to the multipliers of 0.5, 1.1, 1.4, and 1.9 described earlier.   

A. Request Approvals 
Figure 5 and Figure 6 are plots of the percent of flight level change requests that were approved versus the ADS-

B equipage levels for 8 different experiment conditions. The 8 variations shown are traffic density levels and 

Table 6. TMX pilot model request availability 

Traffic Aircraft Range Traffic at Desired Altitude Traffic at Intermediate Altitude 

< 15 nmi None None 

>=15 nmi & < 60 nmi None ITP 

>= 60 nmi & < 160 nmi Standard ITP 

>= 160 nmi Standard Standard 
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whether the flight level change was approved based on SA alone or SA + ITP. The values plotted are an average 

across the 18 traffic flows tested for each combination of experiment parameters.  As the number of ADS-B IN 

equipped aircraft increased, the percent of altitude change requests approved also increased. This is expected 

because aircraft equipped with ADS-B IN are assumed to also be equipped with ADS-B OUT, which results in more 

potential reference or target aircraft. However, the percent of the altitude change requests that were approved 

decreased as the density of traffic increased.  This is shown in Figure 5 for the RM1 request method and Figure 6 for 

the RM0 request method.  These figures show a direct relationship between the percent of aircraft equipped with 

ADS-B IN and the percent of requests approved.  Figure 6 shows that the approval rates are slightly higher with the 

RM0 entry requests than with the RM1 entry requests shown in Figure 5.  For example under the conditions of only 

using SA at the medium traffic density, around 61% of the requests were approved using the RM1 request method, 

compared to around 70% using the RM0 request method under the same conditions.  There is only a slight 

difference between the curves for SA versus SA+ITP for any combination of conditions.  The main cause of this is 

that the majority of the altitude change requests made were non-ITP requests, even when aircraft were capable of 

using the ITP.  This also is the reason that there is fluctuation between whether SA or SA+ITP has a higher approval 

rate for specific conditions. 
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Figure 5. Approval rate of altitude change requests; Requested compromise entry altitude (RM1) 
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While the data shows an increase in request approvals when using SA and ITP, it should be emphasized that 

these opportunities to climb or descend are not created by either SA or the ITP capability tested in this experiment.  

Openings for aircraft to climb or descend exist in the track structure today, but aircraft are not aware of when it is 

possible to make use of these openings.  An ADS-B IN display can provide a way to identify and make use of these 

opportunities.  Figure 7 shows the percent of altitude change requests that could have been approved under the 

baseline conditions (current operations) using the request restrictions discussed earlier.  Under traffic levels 

comparable to today (medium density) if all of the aircraft that wanted to change altitude made a request, than about 

half of the requests could have been approved.  The reason for the RM1 method having fewer opportunities is that 

the aircraft are nominally starting 1,000 feet above their optimum, so there is a longer period of time before any 

change would be efficient.  The decreasing opportunities with increasing traffic density occur because the “holes” on 

the track that an aircraft could climb or descend into are now being filled from the start of the track with additional 

aircraft.  While similar opportunities exist in today’s system, if all aircraft were to start asking every time an altitude 

change was desired, the Air Traffic Service Provider (ATSP) could become overwhelmed.  The most effective 

approach to take advantage of the opportunities that exist for improving flight efficiency through altitude changes is 

to provide a means by which the aircraft can make more informed requests.  Introduction of ADS-B technology and 

the ITP can provide information to improve when pilots make requests and give them increased flexibility when 

trying to change altitudes. 
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Figure 6. Approval rate of altitude change requests; Requested optimum entry altitude (RM0) 
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B. Fuel Burn 
The primary variable used for comparisons in the analysis of the data from this experiment was the total fuel 

burn for a given flight normalized by the flight time for that flight. This normalization is required because the 

duration of flight was not always constant between the baseline and experiment scenarios.  The differences were 

primarily caused by different wind fields and different fuel flow rates as a result of altitude changes.  The fuel 

savings for a given flight is calculated as the difference in the normalized fuel burn in the baseline (no ADS-B 

equipage level) and the equipage level being investigated.  This variable can be compared across equipage levels for 

each individual aircraft to create distributions of how many aircraft experienced a benefit or averaged together for a 

system-wide comparison. 

Figure 8 and Figure 9 show the system-wide averages in fuel savings for the RM1 and RM0 entry request 

methods, respectively.  Both cases show a general trend that there is an inverse relationship between aircraft density 

and the average fuel savings of aircraft. This can be shown since with each increase in traffic density, low up to 

ultra, a decrease in the average fuel savings occurs when comparing the same experiment conditions.  The 

combination of SA+ITP under the same experiment conditions was shown to be more efficient than the use of SA 

alone.  The contribution in fuel savings attributed to SA is greater than, or equal to, the contribution provided by the 

ITP in the SA+ITP conditions.  This difference is greater with lower traffic densities, as shown by the proximity of 

the two low density curves and larger separation between the two ultra density curves in Figure 9.  This is caused by 

the fact that as the traffic density increases the use of ITP to make altitude changes is needed more frequently.  It 

should be noted that the savings in the RM0 entry case are again higher than in the RM1 entry case.  In general there 

is a larger system benefit from an increase in ADS-B IN than from an increase in ADS-B OUT equipage.  This can 

be seen by comparing the results for the three ADS-B IN cases of 10%, to the three ADS-B OUT cases of 90%.  

This is most likely a result of the increased number of aircraft gaining benefit from having ADS-B equipage.  In 

both Figure 8 and Figure 9 the increase of ADS-B OUT equipage is of more benefit to aircraft that are capable of 

using the ITP than those that are not (SA only). 
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Figure 7. Available maneuvers in baseline scenarios 
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Figure 8. Average fuel flow savings from requested compromise entry scenarios (RM1) 

0

10

20

30

40

50

60

70

80

0_0 30_10 60_10 90_10 60_45 90_45 90_80

Equippage Level

(%ADS-B OUT vs. %ADS-B IN)

F
u
e
l 
F
lo
w
 S
a
v
in
g
s 
(l
b
s/
h
r)

SA LOW

SA MEDIUM

SA HIGH

SA ULTRA

SA+ITP LOW

SA+ITP MEDIUM

SA+ITP HIGH

SA+ITP ULTRA

 
Figure 9. Average fuel flow savings from requested optimum entry scenarios (RM0) 
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While the system-wide average is useful for investigating large-scale trends and effects, it is also useful to 

examine the results at an individual aircraft level.  By considering the effects on the distribution of savings per 

aircraft a more detailed and accurate picture of the effects can be found.  Figure 10 and Figure 11 show the 

distribution of the fuel savings (relative to the baseline) for all aircraft that were in the medium density, 90_80 

equipage level, and could be equipped with both SA + ITP scenarios.  The first series in each figure represents the 

savings or penalty that aircraft not equipped with ADS-B IN experienced.  The second series shows the fuel savings 

experienced by those aircraft equipped with ADS-B IN.   

Under RM1 and RM0 request methods less than 10% of non-ADS-B IN equipped aircraft had a fuel 

savings/penalty of more than ±10 lbs/hr.  By comparison, ADS-B IN equipped aircraft in the RM1 and RM0 request 

methods experienced fuel savings greater then +10 lbs/hr around 30% and 55% of the time, respectively.  These 

ADS-B IN equipped aircraft were nearly all (>99.5%) distributed with positive fuel savings only (i.e., no penalties).  

This shows that with the combination of SA and ITP the probability of ADS-B IN equipped aircraft saving fuel over 

the baseline is increased compared to aircraft with no ADS-B IN equipment.  An important point is that non-ADS-B 

IN equipped aircraft are evenly distributed around a savings of 0 lbs/hr.  The increased maneuvering of ADS-B IN 

equipped aircraft does not cost non-ADS-B IN aircraft additional fuel.  It also shows that the distribution is more 

favorable for ADS-B IN equipped aircraft with the RM0 entry requests than with the RM1 entry requests. 

  

 

  
Figure 10. Fuel savings for all aircraft in Medium Density, 90_80 equipage, SA+ITP, requested 

compromise entry scenarios (RM1)  
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IX. Conclusion 

This experiment looked at the effects that the use of ADS-B IN and ADS-B IN plus the ITP had on the 

NATOTS.  The effects were examined across multiple ADS-B equipage environments, traffic densities, and track 

entry altitude request methods.  The results showed that the benefits of ADS-B increase with the percent of aircraft 

in the system equipped with ADS-B.  The influence of increased levels of ADS-B IN on system improvements was 

shown to be larger than the influence from increased levels of ADS-B OUT (when looking at things from a system 

perspective).  The effect of adding the increased flexibility in altitude change requests of the ITP also increased the 

overall system operational benefits compared to the addition of an ADS-B IN display alone.  As the traffic density 

increased, the capability of ITP to allow aircraft to maneuver through altitudes at which current separation did not 

exist became an even more useful tool.  The request method showed that there were more opportunities for aircraft 

to make improvements to their flight profile under the RM0 request method than under the RM1 request method.  

This was primarily due to the fact that the baseline conditions for the RM0 method were not as fuel efficient as the 

RM1 method baseline, providing for the improved savings on flights. 

While not a focus of this experiment, there are other aspects to the NATOTS operation that could provide 

additional efficiency enhancements.  This experiment indicates that there is a link between the efficiency of the 

requested altitude and track loading to the overall efficiency of the track system.  If altitude selection and track 

loading could be optimized, then the efficiency of the system could be improved.  Another source of large efficiency 

in the system could be if the separation standards were reduced, allowing for more aircraft to be located at their 

requested and optimum altitudes.  This is the key feature of the ITP, that it helps aircraft find a way to reach their 

optimum altitude.  Both the situation awareness aspects of an ADS-B IN display and the In-Trail Procedure would 

provide benefit if implemented in the NATOTS.  The benefits provided may not justify the entire cost of the 

airframe implementation, but they could provide a strong contribution to a suite of ADS-B IN applications. 

 

 

Figure 11. Fuel savings for all aircraft in Medium Density, 90_80 equipage, SA+ITP, requested optimum 

entry scenarios (RM0) 
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